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Ensuring border security against potential threats has been a long standing problem and
it becomes much more challenging for land borders due to its long distances coupled with
terrain variations. In this paper, we consider a scenario in which a team of UAVs (the pursuers)
attempt to prevent an intruder ground vehicle (the evader) from escaping through the border.
The ground intruder’s presence is made known by a laser fence positioned inside the border.
Upon detection, the UAVs are activated and given the objective to cooperatively capture the
intruder. We formulate the scenario as a zero-sum differential game whereupon all agents
exhibit simple motion and the pursuers have a speed advantage. For cases where capture inside
the border is possible, the payoff/cost for the pursuers/evader is the distance from capture to
the border. The solution to the game is derived based on the geometric properties of the game
and verified for the single pursuer case with a border comprised of straight-line segments. This
game may contain a dispersal surface which has interesting practical consequences when the
optimal strategies are applied in discrete time.

I. Nomenclature

α = ratio of evader speed to pursuer speed
ϕ = evader’s heading angle
ψi = pursuer i’s heading angle
B = border
C = Apollonius circle center
C = set of termination conditions
D = Apollonius disk
F = the point on the border which is closest to the capture point
HJI = Hamilton-Jacobi-Isaacs equation
I = candidate capture point
I∗ = optimal capture point
J = cost (payoff) for evader (pursuers)
RE = region of win for the evader
RP = region of win for the pursuer(s)
r = Apollonius circle radius
S = Evader’s feasible region
V = the Value of the game
VE = evader speed
VP = pursuer speed
x = system state
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II. Introduction

Border surveillance and defense is a task for which UAVs are well-suited to carry out as it requires persistent
vigilance. Additionally, their relative speed compared to ground vehicles and the possibility of varied terrain

points to the utility of UAVs for this purpose. One possible scenario pertaining to border surveillance and defense is
that of an intruder, perhaps performing surveillance for the enemy, which, having gathered some information, is now
attempting to escape back to safety through the border to deliver the intelligence. Thus we are interested in engaging
the intruder with a number of homogeneous UAVs with the intent of capturing the intruder or at least destroying it
within the border. Conceptually, the border may represent a physical border and thus capture of a vehicle outside the
border could be considered an act of war, or perhaps the border represents our sensor range, outside of which the
intruder’s position can not be tracked. Suppose that the intruder is a ground vehicle, or UAV, whose maximum speed
is less than the speed of our UAVs – thus capture may be possible in some situations. If the intruder’s speed is greater,
then capture may not ever be possible. The presence of the intruder is made known to the UAVs by an event such as the
intruder crossing a laser fence. From this point on, the position of the intruder is known to the UAVs. The goal, then,
is for the UAVs to cooperate in capturing the intruder based on their positions at the time the laser fence is crossed by
the intruder.

We formulate the above scenario as a differential game wherein the agents have simple motion; that is, the vehicles
are not turn-constrained and have a fixed speed. This problem may be categorized as pursuit-evasion where our UAVs
play the role of the pursuers and the intruder serves as the evader. Pursuit-evasion differential games were explored
extensively by Isaacs in [1]. Recently, there has been much work in analyzing these types of problems – for instance,
[2] re-examined Isaacs’ two cutters and fugitive ship problem, in which two fast pursuers cooperate to capture a single
evader, and the cost is capture time. The solution was then generalized in [3] for any number of pursuers. Other
contributions have focused on introducing additional complexity by including a constrained environment [4, 5] or
adding obstacles [6, 7]. In all of the cases mentioned above, capture time is the payoff/cost of the game. Thus the
evader is interested only in extending its life. In the present scenario, the evader seeks to escape, if possible, or to
minimize its distance to the border at capture if it cannot escape. This scenario is similar to one considered by Isaacs
which he referred to as Guarding a target (see Example 1.9.2 in [1]). The analogy is that the border serves as the target;
the difference is the presence of multiple pursuers (or guards) and their speed advantage over the evader.

Two questions (or games) may be considered in this scenario: (1) is escape possible for the evader (the game of kind)
and (2) how close can the evader get to the border before being captured (the game of degree). In the remainder of the
paper, both games will be addressed. Section III expresses the problem formulation of the game of degree. Section IV
describes the game of kind and characterizes the win regions for the single and multiple pursuer cases. Section V
discusses the possibility for a dispersal surface in the game and some practical consequences. Lastly, Section VI
concludes this work and discusses some possible extensions.

III. Game of Degree
Here we consider the game of degree wherein escape through the border is not possible for evader. Consider M

pursuers and an evader, with simple motion:

ÛxE = α cos ϕ,
ÛyE = α sin ϕ,
ÛxPi = cosψi, i = 1, . . . , M

ÛyPi = sinψi, i = 1, . . . , M

(1)

where α = VE/VP < 1 is the speed ratio constant; note, the pursuers share the same velocity VPi = VP, i = 1, . . . , M .
The admissible controls are given by ϕ, ψi ∈ [−π, π]. The cost/payoff function is the terminal distance, at the time of
interception, between the evader and the border. The pursuer strives to capture the evader and maximize this separation
while the evader wants to minimize it. The cost/payoff function can be written as follows:

J =
√
(xE f − xF )2 + (yE f − yF )2. (2)

where the point F : (xF, yF ) is defined as the point on (any segment of) the border which is the closest to the terminal
position of the Evader.
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Fig. 1 Definition of scenario, coordinate system, and payoff/cost. Red triangles represent pursuers, the blue
circle is the evader, the blue line is the laser fence, and the red line is the border.

Interception is defined by point capture, that is, the game terminates when the state of the system enters the set

C :=
{
x
���� ∃i s.t .

√
(xPi − xE )2 + (yPi − yE )2 = 0

}
(3)

Figure 1 specifies the coordinate system as well as the payoff/cost for a given interception point (xE f , yE f ). The main
point of defining the objective in Eq. (2) this way is robustness. The pursuers want to keep the evader as far from the
border as possible in case a pursuer is incapacitated or blown off-course by wind, which could allow the evader to get
closer to the border or even escape.

A. Single Pursuer Solution and Verification
In this differential game we can then define an Apollonius circle using the instantaneous separation between P

(Pursuer) and E (Evader) and the speed ratio parameter α = VE/VP < 1. Let C denote the center of the circle. We
have that the three points: P, E , and C are located on the same line, see Fig. 2. Also in this figure we can see that the
Borderline separates the plane into two regions. The game is played in the region of the Euclidean plane G where both
the Pursuer and the Evader are initially located. This region is further divided into the region of win for the pursuers
and the region of win of the evader.

Define d =
√
(xE − xP)2 + (yE − yP)2 as the distance between players P and E . Also, let r be the radius of the

Apollonius circle. Then, r is given by

r =
α

1 − α2 d. (4)

Assume that the parameters (mi, ni) of each border segment are given, where the segment i is given by y = mi x+ni .
Also assume that the x ∈ RP , that is, in the region of win of the pursuer. RP can be determined by analyzing whether
or not the Apollonius circle intersects any segment of the border.

Proposition 1. Consider the differential game of border defense (1)–(3). The Value function is given by V(x) = Vi∗ (x)
where i∗ = arg mini Vi(x) and

Vi(x) = 1
1−α2

[
(xE − α2xP − mi

yE−m̄i xE−α2(yP−m̄i xP )−(1−α2)ni
m2

i+1 )2

+ (yE − α2yP − m2
i

yE−m̄i xE−α2(yP−m̄i xP )+ 1−α2

m2
i

ni

m2
i+1 )2

]1/2

− α
1−α2

[
(xE − xP)2 + (yE − yP)2

]1/2

(5)

where x = [xE yE xP yP]T .
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Fig. 2 Border defense scenario 1 Pursuer - 1 Evader

Proof. The optimal cost/payoff is obtained when E is intercepted by P at the point on the Apollonius circle closest to
the border. For each segment of the border, the closest point between the circle and the border segment is given by
the orthogonal line to the border segment that passes by the center of the circle C as shown in Fig. 3. The distance
between points Ii and Fi is given by

Vi(x) =
√
(xc − xF )2 + (yc − yF )2 − r (6)

where the center of the circle is explicitly given by:

xc = 1
1−α2 (xE − α2xP)

yc =
1

1−α2 (yE − α2yP)
(7)

In order to write the Value function directly in terms of the state x we need to evaluate the point F : (xF, yF ) in terms
of the state x. The equation of the orthogonal line to segment i passing through C is y = m̄i x + n̄i where m̄i = − 1

mi
and

n̄i(x) = yc − m̄i xc
= 1

1−α2

(
yE − α2yP − m̄i(xE − α2xP)

) (8)

We now solve the following linear equation to determine xF

mi xF + ni = m̄i xF + n̄i

The coordinate xF is explicitly given by:

xF (x) =
n̄i − ni
mi − m̄i

=
mi

1 − α2 ·
yE − m̄i xE − α2(yP − m̄i xP) − (1 − α2)ni

m2
i + 1

(9)

and yF is given by:

yF (x) = mi xF + ni =
m2
i

1 − α2 ·
yE − m̄i xE − α2(yP − m̄i xP) + 1−α2

m2
i

ni

m2
i + 1

(10)

Substitute (4), (7), (9), (10) into (6) to obtain eq. (5). The problem of finding the closest point on the border to the
Apollonius circle has been simplified by obtaining the closest point of each segment of the border to the Apollonius
circle. Then, the solution is given by i∗ = arg mini Vi(x).
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Fig. 3 Derivation of V(x)

In the next theorem we have removed the subscript i for simplicity, that is, it is assumed that the optimal segment i
has been determined.

Theorem 1. Consider the differential game of border defense (1)–(3). The saddle point strategies of the Evader and
the Pursuer are

cos ϕ∗ =
xI − xE√

(xI − xE )2 + (yI − yE )2

sin ϕ∗ =
yI − yE√

(xI − xE )2 + (yI − yE )2

cosψ∗ =
xI − xP√

(xI − xP)2 + (yI − yP)2

sinψ∗ =
yI − yP√

(xI − xP)2 + (yI − yP)2
.

(11)

In addition, V(x) is continuous and continuously differentiable (except at singular surfaces) and V(x) satisfies the
Hamilton-Jacobi-Isaacs (HJI) equation.

Proof. We can obtain the partial derivatives of V with respect to each element of the state. They are given by

∂V
∂xE

=
m

(1 − α2)(m2 + 1)
· m(xc − xF ) − (yc − yF )√
(xc − xF )2 + (yc − yF )2

− α

1 − α2 ·
xE − xP√

(xE − xP)2 + (yE − yP)2
∂V
∂yE

=
1

(1 − α2)(m2 + 1)
· −m(xc − xF ) + (yc − yF )√
(xc − xF )2 + (yc − yF )2

− α

1 − α2 ·
yE − yP√

(xE − xP)2 + (yE − yP)2
∂V
∂xP

=
α2m

(1 − α2)(m2 + 1)
· −m(xc − xF ) + (yc − yF )√
(xc − xF )2 + (yc − yF )2

+
α

1 − α2 ·
xE − xP√

(xE − xP)2 + (yE − yP)2
∂V
∂yP

=
α2

(1 − α2)(m2 + 1)
· m(xc − xF ) − (yc − yF )√
(xc − xF )2 + (yc − yF )2

+
α

1 − α2 ·
yE − yP√

(xE − xP)2 + (yE − yP)2
.

(12)

Let us define the following

cos η = xF−xc√
(xF−xc )2+(yF−yc )2

, sin η = yF−yc√
(xF−xc )2+(yF−yc )2

(13)
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so that tan η = m̄ as it can be seen in Fig. 3. Also define

cos λ = xE−xP√
(xE−xP )2+(yE−yP )2

, sin λ = yE−yP√
(xE−xP )2+(yE−yP )2

(14)

where λ is the Line-Of-Sight (LOS) angle from P to E .
Then, equations (12) can be written as follows

∂V
∂xE
= 1

1−α2

[
m

m2+1 (−m cos η + sin η) − α cos λ
]

∂V
∂yE
= 1

1−α2

[ 1
m2+1 (m cos η − sin η) − α sin λ

]
∂V
∂xP
= α

1−α2

[
αm
m2+1 (m cos η − sin η) + cos λ

]
∂V
∂yP
= α

1−α2

[
α

m2+1 (−m cos η + sin η) + sin λ
] (15)

Note that m̄ = tan η = sinη
cosη . We then have that m = − 1

m̄ = −
cosη
sinη and m2 + 1 = 1

sin2 η
. Additionally, m cos η − sin η =

− 1
sinη and (15) can be written in the simplified form:

∂V
∂xE
= − 1

1−α2 (cos η + α cos λ)
∂V
∂yE
= − 1

1−α2 (sin η + α sin λ)
∂V
∂xP
= α

1−α2 (α cos η + cos λ)
∂V
∂yP
= α

1−α2 (α sin η + sin λ)

(16)

Note that the coordinates of the interception point I can be written as follows: xI = xc + r cos η and yI = yc + r sin η.
We can write

xI−xE
r = α cos λ + cos η

yI−yE
r = α sin λ + sin η

xI−xP
r = 1

α cos λ + cos η
yI−yP

r = 1
α sin λ + sin η

(17)

By multiplying and dividing each equation in (11) by 1/r we obtain

cos ϕ∗ =
α cosλ+cosη√

(α cosλ+cosη)2+(α sinλ+sinη)2

sin ϕ∗ =
α sinλ+sinη√

(α cosλ+cosη)2+(α sinλ+sinη)2

cosψ∗ =
1
α cosλ+cosη√

( 1
α cosλ+cosη)2+( 1

α sinλ+sinη)2

sinψ∗ =
1
α sinλ+sinη√

( 1
α cosλ+cosη)2+( 1

α sinλ+sinη)2

(18)

In general, the HJI equation is given by

− ∂V
∂t =

∂V
∂x · f(x, ψ∗, ϕ∗) + g(t, x, ψ∗, ϕ∗) (19)

In this problem we have that ∂V
∂t = 0 and g(t, x, ψ∗, ϕ∗) = 0. Then, we compute

∂V
∂xE

α cos ϕ∗ + ∂V
∂yE

α sin ϕ∗ + ∂V
∂xP

cosψ∗ + ∂V
∂yP

sinψ∗

= − α
1−α2 · (cosη+α cosλ)2+(sinη+α sinλ)2√

1+α2+2α(cosλ cosη+sinλ sinη)
+ α2

1−α2 ·
1
α2 (α cosη+cosλ)2+ 1

α2 (α sinη+sinλ)2

1
α

√
1+α2+2α(cosλ cosη+sinλ sinη)

= α
1−α2 ·

−
(
1+α2+2α(cosλ cosη+sinλ sinη)

)
+1+α2+2α(cosλ cosη+sinλ sinη)√

1+α2+2α(cosλ cosη+sinλ sinη)
= 0

(20)

In summary, the Value function V(x) was obtained, it is continuous and continuously differentiable (outside dispersal
surfaces), and it satisfies the HJI equation.
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Fig. 4 Convex Border

B. Non-convex Border
In this section we consider the existence of a non-convex border. Before that we recall that the optimal strategies, as

obtained in Proposition 1, were obtained from candidate strategies corresponding to each segment of the border. Each
candidate solution is obtained by finding the closest point on the segment to the Apollonius circle whose radius and
center are given by (4) and (7), respectively. The closest point to the circle is obtained by means of the orthogonality
condition in Proposition 1.

When considering the candidate solution in the Euclidean plane and when the border is convex, there exist two
cases: the closest point on segment j is such that Fj ∈ ∂G and the case where the point on the extended segment is
such that Fj < G. The second case is illustrated in Fig. 4 by drawing the extended line corresponding to segment j.

Consider x ∈ Rp and consider the candidate solution Fj < G. Then, there exists Fk ∈ G such that Vk(x) < Vj(x)
and, hence, the point Fj is not the solution of the game and need not to be considered in order to obtain the optimal
strategies. As it is shown in Fig. 4, it holds that Vj(x) = Fj Ij > Pk Ij > Fk Ik = Vk(x), where Pk is the intersection
point between segment k of the border and the line segment Fj Ij . By the previous relationship, one can also discard
any other point on segment j. For instance, since Fj < G is an infeasible solution, the point F ′j ∈ ∂G (in segment j) is
the closest feasible point to the circle (to the corresponding point I ′j on the circle) and one may be tempted to consider
this choice. However, we have that F ′j I ′j > Fj Ij by definition of Fj , then, F ′j I ′j > Fk Ik = Vk(x).

On the other hand, when the border is non-convex, the case where the closest point on the extended segment j is
such that Fj ∈ G is possible. This is now illustrated in Fig. 5. Point Fj ∈ G is an infeasible solution since it does not
lead the evader directly into safe haven. However, one can still consider the closest feasible point on segment j which
is point N ∈ ∂G in Fig. 5, the ‘corner’ of the non-convex border into consideration. Under this scenario we define

Vj(x) =
√( 1

1−α2 (xE − α2xP) − xN
)2
+
( 1

1−α2 (yE − α2yP) − yN
)2

− α
1−α2

√
(xE − xP)2 + (yE − yP)2

(21)

where the coordinates of point N are (xN, yN ).

Corollary 1. Consider x ∈ Rp and a non-convex border where for segment j we have Vj(x) as defined in (21). In
addition, we consider the case where i∗ = j, that is, the closest point on the border to the Apollonius circle is point N .
Then, the Value function (21) is continuous and continuously differentiable (except at singular surfaces) and it satisfies
the Hamilton-Jacobi-Isaacs (HJI) equation.
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Proof. The partial derivatives of the Value function with respect to each element of the state are given by

∂V
∂xE

=
1

1 − α2 ·
xc − xN√

(xc − xN )2 + (yc − yN )2
− α

1 − α2 ·
xE − xP√

(xE − xP)2 + (yE − yP)2
∂V
∂yE

=
1

1 − α2 ·
yc − yN√

(xc − xN )2 + (yc − yN )2
− α

1 − α2 ·
yE − yP√

(xE − xP)2 + (yE − yP)2
∂V
∂xP

= − α2

1 − α2 ·
xc − xN√

(xc − xN )2 + (yc − yN )2
+

α

1 − α2 ·
xE − xP√

(xE − xP)2 + (yE − yP)2
∂V
∂yP

= − α2

1 − α2 ·
yc − yN√

(xc − xN )2 + (yc − yN )2
+

α

1 − α2 ·
yE − yP√

(xE − xP)2 + (yE − yP)2
.

(22)

Let us define in this case

cos ηN = xN−xc√
(xN−xc )2+(yN−yc )2

, sin ηN = yN−yc√
(xN−xc )2+(yN−yc )2

(23)

and we can write (22) as follows

∂V
∂xE

= − 1
1 − α2 (cos ηN + α cos λ)

∂V
∂yE

= − 1
1 − α2 (sin ηN + α sin λ)

∂V
∂xP

=
α

1 − α2 (α cos ηN + cos λ)

∂V
∂yP

=
α

1 − α2 (α sin ηN + sin λ).

(24)

The coordinates of point IN in Fig. 5 can be written as follows: xIN = xc + r cos ηN and yIN = yc + r sin ηN . In
addition, we can also obtain similar expressions to (17)-(18) but in terms of ηN . Finally, the HJI equation is satisfied
in a similar form to (20).
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C. Multiple Pursuer Solution
The results from the previous section are now extended to the case of multiple pursuers. This is done primarily by

making use of the solution to the minimum capture time problem for the two-pursuer [1, 2] and multiple-pursuer [3]
scenarios. In the minimum capture time two-pursuer one-evader problem, depending on the initial conditions, the
solution is for all three agents to head to the further of the two Apollonius circle intersections. For that game, it is also
possible for the solution to degenerate to capture by a single pursuer; in this case, the presence of the second pursuer
does not affect the outcome of the game. For more than two pursuers, [3] characterized the feasible region for the
evader; that is, the set of points reachable by the evader before any of the pursuers. Let the Apollonius disk (i.e. the
Apollonius circle and its interior) for the ith pursuer be given as

Di = (ri, (xCi , yCi )) (25)

where ri is the radius of the Apollonius circle from Eq. (4) and (xCi , yCi ) is the center of the Apollonius circle from
Eq. (7). Then the evader’s feasible region is defined as

S = ∩Mi=1Di, i = 1, . . . , M (26)

where M is the number of pursuers. Then let ∂S be the (inclusive) boundary of the region.

Proposition 2. Optimal capture must occur in S

For any point outside of S, it cannot be guaranteed that the evader can reach the point before being captured
(see [3, 8]). Up to a point, increasing the number of pursuers has the effect of reducing the evader’s feasible region
which is generally advantageous for the pursuers.

For the purposes of computing the multiple pursuer solution it is useful to reparameterize the border using an
ordered set of points with a line segment joining consecutive points. Let Bi represent one such point, then the border
is comprised of line segments Bi,i+1 for 0 < i < K where K is the total number of corners of the border, including
endpoints. Thus the border, B, is defined as a set of points along these line segments:

B ≡
{
(x, y) | ∃i s.t. (x, y) ∈ Bi,i+1

}
(27)

We also restrict the border to be open, that is BK , B1, and free of any self intersections (i.e. no two segments cross).
In Section III.A it was shown that the closest point on a circle to line, say Bj, j+1, can be found by drawing a line

segment perpendicular to Bj, j+1 that terminates at the circle’s center. The closest point Ij is then the intersection
between this line segment and the circle. Similarly, Fj is the other endpoint of this line segment, incident to Bj, j+1.
Repeating for all border segments 0 < j < K for a pursuer (say, pursuer i) yields a set of candidate capture points
Ii = {I1, . . . , IK−1} and their corresponding projection onto the border segment Fi = {F1, . . . , FK−1}. The optimal
capture point for the single-pursuer problem is then given as

I∗ = arg min
Ij ∈Ii

∥Ij − Fj ∥ (28)

For the multiple pursuer case, the above procedure is repeated for each pursuer, but there are some additional caveats.
As was shown in [1–3] optimal capture for the multiple pursuer case may occur at the intersection of Apollonius circles.
For the minimum capture time problem, it was also shown in [3] that capture may occur in the interior of S (i.e. in
S ∩ ∂S) with three or more pursuers, but that is not the case here:

Lemma 1. Under optimal play, capture occurs on ∂S.

Proof. The distance from a point in any shape (e.g. S) to a point outside that shape (e.g. (x, y) ∈ B) is minimized at the
boundary of that shape (e.g. ∂S). Since the evader’s cost is the distance from the point of capture to the closest border
segment, the evader would incur a loss by choosing a point on the interior of S. Points beyond ∂S cannot be optimal
capture locations as stated in Proposition 2.

One consequence of Lemma 1 is that the closest point on a pursuer’s Apollonius circle does not correspond to a
candidate capture point if that point is not in ∂S. Thus it is also required that for all I in Ii we have I ∈ ∂S. Second,
since capture may occur at an intersection of Apollonius circles, we must also consider each of these points as candidate
solutions by computing the smallest distance from each Apollonius circle intersection to each border segment. This
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is done similarly as before: draw a line segment which is perpendicular to the border segment whose endpoints are
the border segment and the Apollonius circle intersection; the length of this line segment is the cost/payoff associated
with this candidate solution. Let the set of Apollonius circle intersections be denoted as IC . Lastly, the orthogonality
condition may yield a point Fj which lies beyond one of the endpoints of the line segment. In these cases, Fj may be
moved to the nearest end point (either Bj or Bj+1). The corresponding Ij (for an Apollonius circle) is the point on the
circle that lies on the line connecting the circle center to Fj . This is especially pertinent in the case of a non-convex
border as these candidates may indeed be optimal. Algorithm 1 gives a sketch of the solution process.

Algorithm 1 MP1E Border Solution
procedure MP1E-Border(x, α, B)

S ← EvaderCell(x, α) ▷ see [3]
IC ← vertices of S ▷ see [3]
if S ∩ B then

return ▷ escape is possible
end if
d ←∞
I∗ ← (0, 0) ▷ dummy initialization
for all Apollonius circles and intersections do

for j = 1, . . . ,K − 1 do ▷ for each border segment
Compute F ▷ Eqs. (9) and (10) for Apollonius circles
if F lies off of Bj, j+1 then

F ← arg minh∈ j, j+1 FBh

end if
if Apollonius circle, Di then

Compute I (the intersection of FC and ∂Di)
else

I is an Apollonius circle intersection ∈ IC
end if
if I ∈ ∂S then

d ′← ∥I − F∥
if d ′ < d then ▷ update solution

d ← d ′

I∗ ← I
else if d ′ = d then

I∗ ← [I∗, I] ▷ non-unique solution
end if

end if
end for

end for
return d, I∗ ▷ Value and capture point(s)

end procedure

D. Examples
The first example, shown in Fig. 6, utilizes the same setup as in Fig. 1 with α = 0.6. Essentially, the Value of the

game is determined by comparing the lengths of all of the dotted gray lines emanating from the candidates. These
are the lines of shortest length connecting the candidate to each border segment. It is clear by inspection of Fig. 6
that Algorithm 1 is inefficient: there are some lines which could not possibly be the shortest distance. Algorithm 1
contains a nested for-loop which has complexity O(MK), since the number of Apollonius circle intersections is at most
M (i.e. |IC | ≤ M). Using the parameterization of S given in [3], Algorithm 1 may be redesigned to achieve better
worst-case performance (in a computational sense). We leave this exercise for future work.

The next example highlights the case where the border is non-convex w.r.t the evader as well as degeneracy to
capture by a single pursuer. Note the optimal capture point I∗ is closest to to the corner of the border B2. Incidentally,
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P1

P2

Pursuer

Evader

B

∂S
Di

Ci

Fj

Ij not in ∂S

Candidate

I∗

Fig. 6 2P1E scenario highlighting salient features in the solution process.

the line F1I∗ is not perpendicular to either border segment. In Fig. 7 pursuer P1 is not able to reach the optimal capture
point at the same time as the evader and P2, and thus P1 and its Apollonius circle are shown in yellow. It just so happens
that the Apollonius circle for P2 is contained entirely inside that of P1, and so ∂S is simply P2’s Apollonius circle.
Because of the shape of the border there is only one candidate solution. Here, P1 is free to do anything (including
flee from the evader) without affecting the outcome of the game. These conditions are not necessary for degeneracy to
capture by a single pursuer, however. Indeed it is possible for ∂S to be determined by several pursuers but still capture
is undertaken by a single pursuer. In the latter case, the non-capturing pursuers may still need to aim for the optimal
capture point lest they allow the shape of ∂S to change in such a way that is advantageous for the evader. [3] contains
a more complete categorization of the pursuers in a MP1E scenario, which applies here as well. For the remainder,
however, we only make a distinction between capturing (red) and non-capturing pursuers (yellow).

Figure 8, shows that even for large M (e.g. 10, in this case) capture is almost always carried out by two or one
pursuers.
Remark. It is clear that only those pursuers whose Apollonius circles are a part of ∂S are pertinent to the solution of
the game. Thus pursuers for which the following holds are discarded prior to invoking Algorithm 1,

∂Di ∩ ∂S = ∅ (29)

The last example in this section, shown in Fig. 9, demonstrates the robustness of the policy from the perspective
of the pursuer team. For this example, we choose to implement the agents’ controllers in a discretized manner in
order to visualize the response of the players to this type of implementation constraint. At each discrete timestep, the
pursuer recomputes the optimal capture point via Algorithm 1 and chooses its heading accordingly. In Fig. 9a the
evader chooses to head straight to the border segment on the right, a choice which has some merit as it initially aims
directly away from the pursuer and directly towards a border segment. Initially, the pursuer, unaware of the evader’s
implemented heading, heads towards the optimal capture point which is associated with the border segment on the left.
At the fifth timestep, there is a discrete switch to heading to a capture point associated with the border segment on
the right. Although the suboptimal evader strategy allowed the evader to reach a point beyond S, the evader was not
allowed to enter the red shaded region. In fact, the saddle-point property of the Value function (Eq. (5)) guarantees this
robustness. The same is true for the scenario in Fig. 9b where the evader balances fleeing directly from the pursuer to
avoid capture and heading directly towards the nearest border. Without solving the differential game, this latter strategy
may seem like a good heuristic approach, however, the evader’s cost is greater than the Value of the game.
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P1

P2

Fig. 7 2P1E scenario highlighting a non-convex border as well as degeneracy to capture by a single pursuer.
P1 and its Apollonius circle are shown in yellow to signify that P1 does not participate in capture.

P1

P2

P3

P4

P5

P6

P7

P8
P9

P10

Fig. 8 10P1E example highlighting that capture is carried out by two pursuers.

P1

(a) Evader chooses suboptimal candidate; V = 0.068 and J =
0.177

P1

(b) Evader mixes pure evasion with heading to nearest border;
V = 0.068 and J = 0.073

Fig. 9 Optimal pursuit strategy against two different suboptimal evader strategies demonstrating robustness.

Copyright ©2018 Government of the United States of America, as represented by the Secretary of the Air Force. No
copyright is claimed in the United States under Title 17, U. S. Code. All Other Rights Reserved.



IV. Game of Kind
This section addresses the game of kind within the border defense differential game.

A. Single Pursuer
The solution of the game of kind characterizes the barrier surface H(x;α,mi, ni) that separates the state space into

the two regions RP , the region of win of the pursuer, and RE , the region of win of the evader. If x ∈ RP the pursuer,
playing optimally, is guaranteed to capture the evader before the latter reaches the border. On the other hand, if x ∈ RE

the evader, playing optimally, is guaranteed to escape and reach the border before being captured by the pursuer.
We provide a visual representation on the Cartesian plane of the function H(x;α,mi, ni)which specifies the surface

that separates RP from RE . By fixing the pursuer coordinates (xP, yP) we construct the closed form of the barrier
surface H(x, y; xP, yP, α,mi, ni) = 0. In other words, we characterize the coordinate pairs (x, y) of the possible evader
position with respect to the pursuer coordinates which guarantee that E will escape P if E plays optimally. Let
RP,RE ⊂ R2 denote the region of win of the pursuer and of the evader, respectively, in the Cartesian plane when P
coordinates are fixed.

Theorem 2. Given the parameters (mi, ni) of segment i, for a given speed ratio parameter 0 < α < 1 and pursuer
coordinates (xP, yP), the barrier surface cross section that divides the Cartesian plane into the two regions RP and
RE with respect to segment i is given by the pursuer’s side branch of the hyperbola

hxx x2 + hyy y2 + 2hxy xy + 2hx x + 2hy y + h = 0 (30)

where

hxx = (1 − α2)(m2
i + 1) − 1,

hyy = (1 − α2)(m2
i + 1) − m2

i ,

hxy = −mi,

hx = α2(xP + miyP) + (1 − α2)mini,
hy = α2(xP + miyP)mi − (1 − α2)ni,
h = (1 − α2)n2

i + α
2(1 − α2)[2ni(yP − mxP) − (m2

i + 1)(x2
P + y2

P)] − α4(xP + miyP)2

(31)

Proof. In order to determine the barrier surface with respect to segment i we consider the case where the Apollonius
circle is tangent to segment i. The following condition holds

(xc − xF )2 + (yc − yF )2 = α2

(1−α2)2 [(x − xP)2 + (y − yP)2] (32)

where the potential position of E is denoted by (x, y). Equation (32) can be written as follows
1

1−α2 (x2 + y2) − α2

1−α2 (x2
P + y2

P) + x2
F y

2
F − 2(xc xF + ycyF ) = 0 (33)

Further, by writing (xc, yc, xF, yF ) in terms of (x, y, xP, yP) and simplifying the resulting expression we obtain

1
1 − α2 (x

2 + y2) − α2

1 − α2 (x
2
P + y2

P) +
n2
i

m2
i + 1

−
(
x + miy − α2(xP + miyP)

)2
+ 2

(
1 − α2)ni(y − mi x + α2(mi xP − yP)

)
(1 − α2)2(m2

i + 1)
= 0 (34)

Multiplying the previous equation by (1 − α2)2(m2
i + 1) and grouping the corresponding terms we obtain the quadratic

equation (30). The discriminant of the quadratic equation (30) is given by

D =

�����(1 − α2)(m2
i + 1) − 1 −m
−m (1 − α2)(m2

i + 1) − m2
i

�����
= (1 − α2)2(m2

i + 1)2 − (1 − α2)(m2
i + 1)2

= −α2(1 − α2)(m2
i + 1)2

< 0

hence, equation (30) represents an hyperbola.
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(0, 0)

(0, d)

(−w, d)

Fig. 10 Critical point in border defense design problem

In order to obtain the barrier surface for a collection of segments forming a convex border one needs to compute the
intersection of the corresponding hyperbolas to each couple of adjacent segments. However, for non-convex borders,
the hyperbolas do not suffice when considering the ’corner’ point N .

Corollary 2. Given a point N of a non-convex border, a given speed ratio parameter 0 < α < 1, and pursuer
coordinates (xP, yP), the barrier surface cross section that divides the Cartesian plane into the two regions RP and
RE with respect to point N is an arc of the circle

(x − xN )2 + (y − yN )2 = α2 [(xP − xN )2 + (yP − yN )2
]

(35)

B. Multiple Pursuers
Theorem 3 expresses a more general condition that determines the game of kind, which is applicable for both the

single and multiple pursuer cases.

Theorem 3. Given the initial positions of the evader and pursuers, x, and their respective speeds, if the border
intersects the evader’s feasible region, the evader is able to escape:

B ∩ S =⇒ x ∈ RE (36)

where RE is the region of win for the evader.

Proof. The Apollonius disk defines points that can be reached by the evader at or before a particular pursuer. Since, S
is defined as the set intersection of all of the Apollonius disks (c.f. Eq. (26)) the points in S are reachable by the evader
at or before any pursuer, provided the evader takes an appropriate action. If the evader takes a straight-line path to the
point, then every point along its path is also inside S due to the convexity of the region. Thus there always exists an
evasive path (in the sense of [8]) for the evader to travel to a point in S. Therefore, since B ∩ S there exists (x, y) ∈ B
that is also in S so the evader can escape safely, that is, the pursuers can not guarantee capture.

Remark. If there is only one such point that meets the condition stated in Theorem 3 the border is tangent to S and
capture occurs precisely at that point on the border.

1. Border Defense Design Problem
Now we make use of these results to solve a border defense design problem. Consider a border comprised of a

single, infinitely long line with equally spaced UAVs flying along it in synchronized fashion, such that their spacing
is always constant; the scenario is depicted in Fig. 10. The objective of the design problem is to defend the border
by guaranteeing capture of any single intruder while minimizing cost. Cost, here, is monotonically increasing with
the number of UAVs required (i.e. the density of UAVs along the border), the speed of the UAVs, and the sensing
capabilities at the border. The cost may be considered as the monetary cost required to implement the border defense
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system. Thus our design variables are w, the half-distance between each UAV, α, the ratio of UAV speed to intruder
speed, and d the sensor range at the border. The spacing w is essentially half of the inverse of UAV density along the
border; smaller w means more UAVs and higher cost. The variable d determines the distance inside the border that the
laser fence is located; this distance essentially determines when the pursuit begins. In addition, for closed-loop optimal
control in the sense of the differential game solution, all the positions of the agents must be known; thus the border’s
tracking sensors must have full coverage of the space between the laser fence and the border.

To solve the design problem, we make use of the solution of the game of kind for multiple pursuers. In particular,
we find the critical point where capture occurs exactly at the border in the worst case. This critical point occurs when
∂S is tangent to the border, according to Theorem 3 and the subsequent remark. The best the evader can do is to start
halfway in between the two pursuers; if evader starts any closer to either pursuer it will be captured further inside the
border. This is due to the fact that simultaneous capture occurs on the perpendicular bisector of P1 P2 (c.f. [9], in
preparation). Thus, in order for the evader to minimize distance to the border at capture (i.e. maximize Iy), the evader
must begin on the bisector. Any amount of horizontal distance traveled is akin to wasted time. For interception to
occur exactly on the border, the following condition must hold:

C2
1x
+
(
d − C1y

)2
= R2

1 (37)

where,

C1x =
wα2

1 − α2

C1y =
−dα2

1 − α2

R1 =
α

1 − α2

√
w2 + d2

(38)

Note, Eq. (38) comes from the definition of the Apollonius circle. Substituting Eq. (38) into Eq. 37 and simplifying,
we get,

α =
d
w

(39)

Eq. (39) also comes from the fact that the time of travel for pursuers and evader must be the same. At the critical point,
the distance traveled by each pursuer is w and the distance traveled by evader is d, so wα = d. Therefore, given all but
one of the parameters α,w, d we can determine the value of the free parameter from Eq. (39). If the design parameters
do not satisfy Eq. (39) the system is either over-designed (i.e. more costly than it ought to be) or cannot guarantee
capture for all possible evader initial conditions.

V. Dispersal Surface

A. Single Pursuer
For the single pursuer case, when V(x) = mini Vi(x) = Vk(x) = Vl(x) for k , l then a dispersal surface exists since

more than one optimal solution exists. In general, there could be any number of optimal solutions where the region S
is equidistant to multiple segments of the border and these distances are also the minimum. In such a case the Value
function is continuous but it is not continuously differentiable since ∂Vk

∂x ,
∂Vl

∂x , for instance

∂Vk

∂xE
=

mk

(1−α2)(m2
k
+1) ·

mk (xc−xFk
)−(yc−yFk

)√
(xc−xFk

)2+(yc−yFk
)2
− α

1−α2 · xE−xP√
(xE−xP )2+(yE−yP )2

, ml

(1−α2)(m2
l
+1) ·

ml (xc−xFl
)−(yc−yFl

)√
(xc−xFl

)2+(yc−yFl
)2
− α

1−α2 · xE−xP√
(xE−xP )2+(yE−yP )2

=
∂Vl

∂xE

(40)

The main consequence is that the pursuers will see a small decrease of performance if they choose different than the
Evader. This is seen clearly in Fig. 11 where the evader is able to breach the red shaded region if the pursuer aims at
a different optima initially. Note that the cost/payoff, J, is equal to V if the agents aim at the same optima initially. In
all other cases, J < V representing a loss for the pursuer. Interestingly, the loss in performance varies with the actual
choices of the agents. Table 1 gives the cost/payoff for every combination of initial control action. West, North, and
East denote aiming at the optima associated with these directions, respectively. Now we may treat the choice of initial
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Fig. 11 Dispersal surface in a 1P1E scenario with three optimal capture points. Demonstration of agents
choosing differently with ∆t = 0.05 and V = 0.094.

Table 1 Cost/Payoff (J · 103) for initial control action in Fig. 11

P \ E West North East
West 94 71 25
North 75 94 75
East 25 71 94

heading and the values in Table 1 as a matrix game to determine the best choice of initial heading for the agents. The
optimal strategies come from the Nash equilibrium (or equilibria) which may suggest either a pure strategy or mixed
strategy is optimal. It is obvious, in this case, that the pursuer’s optimal strategy is to aim North, whereas the evader
chooses either West or East with equal probability. Thus the optimal playout of the full game appears as in Fig. 11a or
its mirror image. Although the Value of the differential game is 0.094, the presence of the dispersal surface results in a
cost/payoff of 0.075, assuming optimal play of this matrix game followed by optimal play in the differential game. The
values in Table 1 are dependent upon the timestep. Smaller timesteps will yield smaller losses relative to the Value
of the game. However, for the scenario shown in Fig. 11 the Nash equilibrium, and thus the optimal strategies, of the
initial matrix game are independent of the timestep (unless, of course, the timestep is so large that reaching the border
can be achieved in a single step).

B. Multiple Pursuers
The possibility for a dispersal surface exists also for the multiple pursuer case. Consider the scenario shown in

Fig. 12 which has two pursuers and two optima. There is a horizontal border segment joining the two vertical segments
far above which does not affect the solution of the game. The pursuers, in addition to having to choose East or West, also
must choose whether to agree on a direction or split up. Table 2 contains the values of the cost/payoff for two different
timestep sizes. For the matrix game with ∆t = 0.10, there is a single equilibrium wherein the pursuers’ strategy is to
both choose West or both choose East with equal probability, while the evader’s strategy is to choose West or East with
equal probability. This is not the case for ∆t = 0.15. Using vertex enumeration (c.f. [10]) to compute the equilibria
of the matrix game yields four different equilibria. Now there is the issue that a strategy is only optimal against the
corresponding opponent strategy associated with a particular equilibrium. In some scenarios, there may exist a focal
point (see [11]) wherein there is a particular equilibrium that is sensible for the players to agree upon. Interestingly,
for the present case, all four equilibria have a pursuer strategy of splitting up! This is intuitive – the potential loss
associated with both pursuers choosing opposite the evader is much greater for ∆t = 0.15 than it is for ∆t = 0.10; thus,
splitting up is the best option here.

Finally, we note that the perpetual dilemma, as described by Isaacs [1], does not appear to occur in this game. That
is to say, after the agents make a choice of initial heading, regardless of the choices made, the system state will move
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Fig. 12 Dispersal surface in a 2P1E scenario with two optimal capture points.

Table 2 Cost/Payoff (J · 103) for initial control action in Fig. 12

∆t = 0.10 ∆t = 0.15
P1/P2 \ E W E P1/P2 \ E W E
W/W 211 206 W/W 211 201
W/E 208 208 W/E 206 206
E/W 208 208 E/W 206 206
E/E 206 211 E/E 201 211

off of the dispersal surface.

VI. Conclusion
In this paper we have formulated and solved a multiple pursuer single evader differential game with a practical

application to border defense. We considered an intruder who is attempting to escape through the border with some
valuable intelligence; the border is guarded by one or more UAVs whose goal is to capture the evader (if possible) as
far inside the border as possible. For the case of multiple UAVs, or pursuers, we sought strategies which maximize
the cooperation. Treating the scenario as a two-player differential game played by the intruder and the team of UAVs
allowed us to do just that. In the game of degree, capture can be guaranteed, and the cost/payoff is the smallest distance
from the point of capture to any segment of the border. Using the well-known Apollonius circle, the Value function
for the single pursuer single evader game was expressed analytically and shown to satisfy the Hamilton-Jacobi-Isaacs
equation. In this way, the solution was verified. We extended the single pursuer solution to multiple pursuers by
considering simultaneous capture by two or more pursuers at the intersection of their Apollonius circles. These
candidate solutions behave much the same way as the single pursuer candidate solutions. We expressed a simple
approach to determine the optimal capture point for given initial conditions, which, in turn, determines the Value of the
game and the optimal headings for all the agents. For the game of kind, we expressed conditions, which can be easily
checked, to determine in which region a given initial condition lies (whether in the evader or pursuers’ win region).
Finally, we characterized the dispersal surface in this game and presented optimal strategies for the evader and pursuers
for choosing an initial heading.

The solution of the differential game posed in this paper could have many applications, one of which was mentioned
briefly as the border defense design problem. There are also many possible extensions to this work, including multiple
intruders, a heterogeneous pursuer team, intruder with escorts, static border defenses, etc. , which are left for future
research. The benefits of considering such scenarios in the context of differential games are that cooperation among a
team of agents is maximized, the strategies for both players are robust to any opponent strategy, and analytical solutions
(if they may be found) could be implemented onboard in real time.
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